Proximal alternating linearized minimization for nonconvex and nonsmooth problems
نویسندگان
چکیده
We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a broad class of nonconvex and nonsmooth minimization problems. Building on the powerful KurdykaLojasiewicz property, we derive a self-contained convergence analysis framework and establish that each bounded sequence generated by PALM globally converges to a critical point. Our approach allows to analyze various classes of nonconvex-nonsmooth problems and related nonconvex proximal forward-backward algorithms with semialgebraic problem’s data, the later property being shared by many functions arising in a wide variety of fundamental applications. A by-product of our framework also shows that our results are new even in the convex setting. As an illustration of the results, we derive a new and simple globally convergent algorithm for solving the sparse nonnegative matrix factorization problem. Jérôme Bolte: This research benefited from the support of the FMJH Program Gaspard Monge in optimization and operation research (and from the support to this program from EDF) and it was co-funded by the European Union under the 7th Framework Programme “FP7-PEOPLE-2010-ITN”, grant agreement number 264735-SADCO. Shoham Sabach: Supported by a Tel Aviv University postdoctoral fellowship. Marc Teboulle: Partially supported by the Israel Science Foundation, ISF Grant 998-12. J. Bolte TSE (GREMAQ, Université Toulouse I), Manufacture des Tabacs 21 allée de Brienne, 31015 Toulouse, France E-mail: [email protected] S. Sabach School of Mathematical Sciences, Tel-Aviv University Ramat-Aviv 69978, Israel E-mail: [email protected] M. Teboulle School of Mathematical Sciences, Tel-Aviv University Ramat-Aviv 69978, Israel E-mail: [email protected] 2 Jérôme Bolte et al.
منابع مشابه
The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM
We introduce the Stochastic Asynchronous Proximal Alternating Linearized Minimization (SAPALM) method, a block coordinate stochastic proximal-gradient method for solving nonconvex, nonsmooth optimization problems. SAPALM is the first asynchronous parallel optimization method that provably converges on a large class of nonconvex, nonsmooth problems. We prove that SAPALM matches the best known ra...
متن کاملInertial proximal alternating minimization for nonconvex and nonsmooth problems
In this paper, we study the minimization problem of the type [Formula: see text], where f and g are both nonconvex nonsmooth functions, and R is a smooth function we can choose. We present a proximal alternating minimization algorithm with inertial effect. We obtain the convergence by constructing a key function H that guarantees a sufficient decrease property of the iterates. In fact, we prove...
متن کاملProximal linearized iteratively reweighted least squares for a class of nonconvex and nonsmooth problems
For solving a wide class of nonconvex and nonsmooth problems, we propose a proximal linearized iteratively reweighted least squares (PL-IRLS) algorithm. We first approximate the original problem by smoothing methods, and second write the approximated problem into an auxiliary problem by introducing new variables. PL-IRLS is then built on solving the auxiliary problem by utilizing the proximal l...
متن کاملThe Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems
We introduce the Asynchronous PALM algorithm, a new extension of the Proximal Alternating Linearized Minimization (PALM) algorithm for solving nonsmooth, nonconvex optimization problems. Like the PALM algorithm, each step of the Asynchronous PALM algorithm updates a single block of coordinates; but unlike the PALM algorithm, the Asynchronous PALM algorithm eliminates the need for sequential upd...
متن کاملLinearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization
In this paper, we consider a wide class of constrained nonconvex regularized minimization problems, where the constraints are linearly constraints. It was reported in the literature that nonconvex regularization usually yields a solution with more desirable sparse structural properties beyond convex ones. However, it is not easy to obtain the proximal mapping associated with nonconvex regulariz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 146 شماره
صفحات -
تاریخ انتشار 2014